Вы искали: предельные теоремы

Основы теории вероятностей и математической статистики. Материалы для подготовки к семинарским занятиям

Издание содержит базовые теоретические сведения из следующих разделов теории вероятностей и математической статистики: вычисление вероятностей случайных событий, случайные величины и их характеристики, предельные теоремы, методы описания и обработки выборочных данных, точечные и интервальные оценки параметров распределений, проверка гипотез, простая регрессия. Приведены примеры решения задач и задачи для самостоятельной подготовки. Для самостоятельной подготовки к семинарским занятиям студентов всех специальностей факультетов «Специальное машиностроение» и «Робототехника и комплексная автоматизация».

Основы теории вероятностей и математической статистики

Представлен подробный конспект лекций по дисциплине "Основы теории вероятностей и математической статистики" с примерами и иллюстрациями. Издание содержит необходимые сведения о случайных событиях и способах вычисления их вероятностей, дискретных и абсолютно непрерывных случайных величинах и их числовых характеристиках, двумерных случайных векторах. Рассмотрены базовые сведения о законе больших чисел и центральной предельной теореме, а также введение в математическую статистику. Наряду с классическими результатами материал содержит информацию о современном уровне исследований в данной области.

Математические основы теории автоматического управления. Том 3 (3-е издание)

В третьем томе трехтомного учебного пособия приведен математический аппарат, используемый в статистической теории автоматического управления. Рассматриваются основы теории вероятностей и теории случайных функций. Изложение вопросов математики сопровождается решением примеров расчета автоматических систем при наличии случайных воздействий.

Краткий курс теории вероятностей

Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств Чебышева и законов больших чисел. Представлена без доказательства предельная теорема в форме теоремы Ляпунова. Выведена интегральная теорема Муавра-Лапласа.

1