Вы искали: задача Коши

Математическое моделирование процессов теплопроводности методом конечных элементов

Приведены формулировки стационарных и нестационарных задач теплопроводности. Рассмотрены основные особенности построения численного решения этих задач в рамках конечно-элементной технологии. Для студентов 3-го и 4-го курсов факультета «Фундаментальные науки» МГТУ им. Н.Э. Баумана, изучающих дисциплины «Уравнения математической физики», «Методы вычислений», «Математическое моделирование», «Прикладные пакеты инженерного анализа», «Математические модели механики сплошной среды» и выполняющих соответствующие курсовые работы. Может быть полезно студентам старших курсов других факультетов, изучающим численные методы решения краевых и начально-краевых задач.

Интерполяционные многочлены

Издание предназначено в помощь студентам, выполняющим лабораторную работу № 1 по курсу «Вычислительная физика» (модуль 1). Показаны способы построения интерполяционных многочленов Лагранжа и Ньютона с помощью конечных и разделенных разностей, проанализирована их погрешность, указаны ее источники и методы минимизации. Интерполяционные многочлены рассмотрены как самостоятельные объекты для аппроксимации неизвестной аналитической функции по ее значениям в узловых точках и как объекты для построения формул численного дифференцирования. Для студентов 4-го курса бакалавриата, обучающихся по специальности 16.03.01 «Техническая физика».

Методы численного анализа математических моделей (2-е издание)

Книга отражает актуальный уровень развития численных методов и алгоритмов, ориентированных на применение современной вычислительной техники и позволяющих проводить количественный анализ математических моделей широкого класса реальных природных, социальных и технических объектов. Изложены методы решения задач линейной алгебры, систем нелинейных алгебраических уравнений, интерполяция функций, методы численного интегрирования и дифференцирования, численные методы решения задачи Коши и краевых задач для систем обыкновенных дифференциальных уравнений. Приведены основы общей теории разностных схем и ее применение к построению и анализу методов численного решения эллиптических, параболических и гиперболических уравнений, а также численные методы решения интегральных уравнений. Представлены методы генерации сеток для многомерных задач математической физики, многосеточные методы решения, численные методы для решения уравнения переноса и уравнений газовой динамики, алгоритмические основы метода конечных элементов. Для студентов старших курсов технических университетов, аспирантов и инженеров. Может быть полезна преподавателям и научным работникам.

Численные методы решения задач математической физики

Лабораторный практикум по курсу "Методы вычислений" ориентирован на изучение численных методов решения задач математической физики, а также дифференциальных и интегральных уравнений. Приведены примеры заданий, сформулированы контрольные вопросы и требования, предъявляемые к отчетам по лабораторным работам.

Краевая задача для ОДУ второго порядка, моделирующая прохождение плоской волны через слой неоднородной среды

Изложены три метода приближенного решения одномерной задачи распространения плоской электромагнитной волны, падающей ортогонально на плоскопараллельный слой, заполненный неоднородной изотропной средой с переменным показателем преломления. Приближенное решение позволяет найти коэффициенты отражения и прохождения электромагнитной волны через неоднородный слой и построить решение внутри слоя, осуществив сравнение точности результатов, полученных тремя методами.

Дифференциальные уравнения (5-е издание)

Изложены основы теории обыкновенных дифференциальных уравнений (ОДУ) и даны основные понятия об уравнениях с частными производными первого порядка. Авторы стремились объединить строгость изложения теории дифференциальных уравнений с прикладной направленностью ее методов. В связи с этим приведены многочисленные примеры из механики и физики. Отдельная глава посвящена линейным ОДУ второго порядка, к которым приводят многие прикладные задачи. Главу, посвященную изложению численных методов, следует рассматривать как вводную.

Дифференциальные уравнения математической физики (3-е издание)

Рассмотрены различные постановки задач математической физики для дифференциальных уравнений и частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др.

Численные методы интегрирования, решения дифференциальных уравнений и задач оптимизации

Рассмотрены численные методы интегрирования, решения дифференциальных уравнений и оптимизации. Изложены методы решения задачи Коши и краевой задачи для обыкновенных дифференциальных уравнений и систем дифференциальных уравнений. Приведены варианты индивидуальных заданий к лабораторным работам.

Численные методы в задачах проектирования автоматических систем. Часть 1

Рассмотрены задачи, наиболее часто встречающиеся в инженерной практике при проектировании автоматических систем: построение математических моделей, исследование устойчивости, определение импульсных и переходных характеристик, оценка точности, анализ поведения. Представленные алгоритмы и программы написаны на языке популярной для математиков и инженеров среды MatLab, готовы для непосредственного применения пользователем.

Фундаментальное решение линейного дифференциального оператора и задача Коши

Описан метод решения задач математической физики, основанный на использовании фундаментального решения линейного дифференциального оператора. Даны основные сведения по обобщенным функциям, причем обобщенные функции вводят как функционалы на пространстве основных функций. Выведены формулы фундаментальных решений для ряда операторов, используемых при описании колебательных процессов, а также процессов теплопроводности (диффузии) в системах с распределенными параметрами. Подробно рассмотрено применение метода к решению задачи Коши для соответствующих типов уравнений. Рассмотрены примеры решения конкретных задач. В приложении приведены варианты типового расчета.