Издания автора: Галкин Сергей Владимирович

Векторная алгебра в задачах аналитической геометрии

Рассмотрены основные операции в векторной алгебре и их применение для решения типовых задач на плоскость и прямую в аналитической геометрии. Приведен пример решения домашнего задания по аналитической геометрии для студентов первого семестра МГТУ им. Н.Э Баумана.

Методы оптимизации (2-е издание)

Книга посвящена одному из важнейших направлений подготовки выпускника технического университета - математической теории оптимизации. Рассмотрены теоретические, вычислительные и прикладные аспекты методов конечномерной оптимизации. Много внимания уделено описанию алгоритмов численного решения задач безусловной минимизации функций одного и нескольких переменных, изложены методы условной оптимизации. Приведены примеры решения конкретных задач, дана наглядная интерпретация полученных результатов, что будет способствовать выработке у студентов практических навыков применения методов оптимизации.

Интегральное исчисление и дифференциальные уравнения

Рассмотрены неопределенный и определенный интегралы, несобственные интегралы, приложения определенного интеграла, а также основные уравнения первого порядка, способы снижения порядка дифференциальных уравнений, линейные уравнения второго и высшего порядков с постоянными и переменными коэффициентами. Приведены основные теоремы линейной теории, примеры решения уравнений с постоянными коэффициентами на метод подбора формы частного решения и метод вариации. Рассмотрены системы дифференциальных уравнений, основы теории устойчивости, а также поведение траекторий систем в окрестности точек покоя на примерах систем уравнений с двумя и тремя переменными. Изложены приближенные методы решения систем дифференциальных уравнений.

Краткий курс теории вероятностей

Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств Чебышева и законов больших чисел. Представлена без доказательства предельная теорема в форме теоремы Ляпунова. Выведена интегральная теорема Муавра-Лапласа.

Теория функций комплексного переменного и операционное исчисление

Рассмотрены два раздела общего курса математики для технических университетов: "Теория функций комплексного переменного" и "Операционное исчисление", а также теория числовых рядов, теория поля, ряды Фурье и преобразование Фурье.

1